SIMULASI DAN PEMODELAN
Ersaputra Bryan P 201631275 (E)
PENGERTIAN
Simulasi merupakan suatu teknik meniru operasi-operasi atau proses- proses yang terjadi dalam suatu sistem dengan bantuan perangkat komputer dan dilandasi oleh beberapa asumsi tertentu sehingga sistem tersebut bisa dipelajari secara ilmiah (Law and Kelton, 1991).Dalam simulasi digunakan komputer untuk mempelajari sistem secara numerik, dimana dilakukan pengumpulan data untuk melakukan estimasi statistik untuk mendapatkan karakteristik asli dari sistem.
Simulasi merupakan alat yang tepat untuk digunakan terutama jika diharuskan untuk melakukan eksperimen dalam rangka mencari komentar terbaik dari komponen-komponen sistem. Hal ini dikarenakan sangat mahal dan memerlukan waktu yang lama jika eksperimen dicoba secara riil. Dengan melakukan studi simulasi maka dalam waktu singkat dapat ditentukan keputusan yang tepat serta dengan biaya yang tidak terlalu besar karena semuanya cukup dilakukan dengan komputer.
Pendekatan simulasi diawali dengan pembangunan model sistem nyata. Model tersebut harus dapat menunjukkan bagaimana berbagai komponen dalam sistem saling berinteraksi sehingga benar-benar menggambarkan perilaku sistem. Setelah model dibuat maka model tersebut ditransformasikan ke dalam program komputer sehingga memungkinkan untuk disimulasikan.
B. Sistem, Model dan Simulasi
Sistem didefinsikan sebagai suatu kumpulan satu kesatuan, seperti manusia dan mesin yang aktif dan berinteraksi bersama-sama untuk mendapatkan penyelesaian akhir pokok pikiran. (definisi ini diajukan oleh Schmidt dan Taylor (1970)). Praktisnya apa yang diartikan sebagai sistem tergantung pada objektivitas pembelajaran tertentu. Kumpulan kesatuan berisi sistem pembelajaran mungkin hanya sekelompok kecil pada keseluruhan sistem yang satu dengan sistem lainnya.
Sebagai contoh: Jika seseorang ingin mempelajari sebuah bank, untuk menentukan jumlah kebutuhan teller untuk menyediakan kecukupan pelayanan terhadap nasabah, sistem dapat didefinisikan bagian yang konsisten dari bank untuk teller dan penantian nasabah yang akan dilayani. Jika, dengan kata lain, staf loan/kredit dan pengamanan kotak deposit dimasukkan, definisi sistem harus diperluas dengan cara yang jelas. Kita mendefinisikan pernyataan sebuah sistem bahwa pengumpulan variabel-variabel penting untuk menjelaskan sistem di waktu tertentu, relatif pada objektivitas yang dipelajari. Dalam pelayanan bank, contoh-contoh pada pernyataan variabel yang mungkin adalah jumlah teller yang sibuk, jumlah nasabah dalam bank dan waktu kedatangan masing-masing nasabah dalam bank.
Kita mengkatagorikan sistem menjadi dua tipe, diskrit dan kontinyu. Sistem diskrit adalah sistem yang mana variabel berubah sekeika itu juga yang dipisahkan per titik waktu. Pada bank adalah contoh sistem diskrit, ketika state variabel-contohnya jumlah nasabah dalam bank-berubah hanya ketika nasabah tiba atau nesabah telah selesai dilayani dan pulang. Sistem kontinyu adalah sistem yang mana state variabelnya berubah secara kontinyu per waktu.
Sebagian kecil sistem pada praktisnya adalah sama sekali diskrit atau kontinyu: tetapi ketika tipe sistem berubah menguasai sebagai besar sistem, perubahan tersebut biasanya mungkin untuk mengklasifikasikan sistem diskrit atau kontinyu.
a. Penelitian dengan Sistem Aktual dan Penelitian dengan Model pada Sistem
Jika penelitian sistem aktual ini mungkin dilakukan (dan biayanya efektif) untuk merubah sistem secara fisik dan beroperasi dibawah kondisi baru, penelitian ini mungkin dapat diharapkan, dalam permasalahan ini tidak ada pernyataan tentang apakah apa yang kita pelajari adalah valid. Tetapi penelitian ini jarang bisa dikerjakan, karena sebagian besar penelitian akan sering terlalu mahal dan begitu merusak sistem. Sebagai contoh konkritnya sebuah bank mungkin mempertimbangkan pengurangan jumlah teller untuk meningkatkan anggaran, tetapi secara aktual usaha ini akan mengurangi tugas teller dalam melayani nasabah sehingga akan muncul panjangnya antrian nasabah. Selanjutnya secara grafis sistem semestinya tidak ada, tetapi sekalipun demikian kita ingin mempelajarinya dalam berbagai rancangan konfigurasi alternatif untuk mengetahui permulaan membuat sistem. Contohnya pada kondisi ini seharusnya dibuat pengajuan/usulan jaringan kerja komunikasi, atau sebuah sistem strategi senjata nuklir. Untuk alasan ini sistem biasanya perlu membangun model, sebagai wakil sistem dan mempelajarinya sebagai pengganti sistem aktual. Ketika menggunakan model, adalah selalu timbul pertanyaan apakah model secara aktual merefleksikan sistem untuk tujuan membuat keputusan, sehingga perlu dibentuk model yang valid.
b. Model Fisik dan Model Matematik
Pada kebanyakan masyarakat, kata model menimbulkan kesan pada mobil-mobilan dari tanah liat pada uji airodinamika dalam terowongan angin, cockpit yang tidak terhubungkan dengan pesawatnya yang digunakan untuk pelatihan pilot atau miniatur supertakn yang meluncur di kolam. Semua itu adalah contoh-contoh model fisik (juga disebut model Iconik) adalah tidak tipikal pada berbagai model yang biasanya penting dalam sistem analisis dan riset operasi. Kadang-kadang bagaimanapun juga model ini dijumpai berguna untuk membangun model fisik untuk belajar enginering atau sistem manajemen. Contohnya termasuk model-model skala top tabel pada sistem penanganan material dan kasus terakhir model full skala fisik pada restoran cepat saji disamping pergudangan, lengkap dengan full skala, wujudnya manusia. Tetapi mayoritas model dibangun untuk tujuan tersebut adalah secara matematik mewakili sistem dalam istilah logika dan hubungan yang kuantitatif yang kemudian dimanipulasi dan diubah untuk mengetahui bagaimana reaksi model, dan bagaimana sistem akan bereaksi-jika model matematik adalah model yang valid. Barangkali contoh sederhana model matematik adalah hubungan yang erat d = rt, dimana r adalah kecepatan perjalanan, t adalah waktu perjalanan belanja, dan d adalah jarak perjalanan. Model ini seharusnya menyediakan model yang valid seketika (contohnya, sebuah penyelidikan ruang angkasa untuk planet lain setelah diperoleh kecepatan edarnya) tetapi sangat kekurangan model untuk tujuan lain (contohnya jam-jam sibuk daqn sesaknya jalur bebas lalulalang urban/pendatang).
c. Solusi Analitik dan Simulasi
Sekali kita membangun model matematik, model ini harus diuji untuk mengetahui bagaimana model ini dapat digunakan untuk menjawab pertanyaan menarik tentang sistem yang diduga untuk ditampilkan. Jika model ini cukup sederhana, model barangkali bekerja dengan hubungannya secara kuantitatif mendapatkan pembuktian, disebut solusi analitik. Pada contoh d = rt, jika kita mengetahui jarak perjalanan dan kecepatan, maka kita dapat bekerja dengan model untuk mendapatkan waktu t = d/r sebagai waktu yang dibutuhkan. Model ini sangat simpel, tertutup-bentuk solusi yang dapat diperoleh hanya dengan kertas dan pensil. tetapi beberapa solusi analitik bisa menjadi luar biasa rumitnya, mensyaratkan sumber-sumber perhitungan yang besar, dengan sistem matrik invers, adalah contoh yang baik untuk kondisi dimana model ini merupakan rumusan analitik yang dikenal secara prinsipil. tetapi perolehan model secara numerikal yang diperoleh seketika, adalah jauh dari uji coba-coba. Jika solusi analitik pada model matematik tersedia dan bisa dihitung secara efisien, solusi analitik ini biasanya dapat diharapkan untuk belajar model dengan cara ini dari pada dengan simulasi. bagaimanapun juga, banyak sistem sangat kompleks, sehingga bahwa model matematik yang valid memiliki kekomplekan sistem, berlawanan kemungkinannya pada solusi analitik. Dalam kasus ini model harus dipelajari dalam arti simulasi. Misalnya pengujian secara numerik model pada masukkan dalam pertanyaan bagaimana mereka mempengaruhi tampilan hasil ukuran.
Selagi sistem tersebut mungkin sebuah elemen kecil benar secara peyoratif telah lama diketahui seperti metode pemikiran lagi sesudahnya, kadang-kadang berguna untuk menjelaskan simulasi.
Diberikan model matematika untuk dipelajari secara simulasi (sekarang merujuk sebagai model simulasi), kita kemudian mencari alat-alat utama untuk melakukan simulasi tersebut. Alat-alat ini berguna untuk tujuan mengklasifikasikan model-model simulasi dalam 3 dimensi yang berbeda:
1. Model Simulasi Statis dan Dinamis
Model simulasi statis adalah merepresentasikan sistem pada waktu utama, atau model ini mungkin digunakan untuk menunjukkan sistem yang mana permainan waktunya sederhana tanpa aturan; contoh simulasi statis adalah model Monte Carlo samping itu model simulasi dinamik menunjukkan sistem sistem yang lambat laun melampaui waktu seperti sistem konveyor pada pabrik.
2. Model Simulasi Determinsistik dan Stokastik
Jika model simulasi tidak berisikan komponen-komponen yang probabilitik (dengan kata lain random), model ini disebut deterministik; penyelesaian sistem (dan analisis yang tidak bisa dikembalikan ) pada penjabaran persamaan yang berbeda sebuah reaksi kimia semesti sebagai model. Dalam model deterministik, outputnya ditentukan sekali membentuk output kuantitas dan hubungan dalam model dikhususkan sama walaupun penentuan yang sebenarnya memerlukan sedikit waktu berhitung untuk mengevaluasi. Banyak sistem bagaimanapun harus dimodelkan seperti pemilikan sekurang-kurangnya beberapa komponen-komponen input random dan membangkitkan model simulasi stokastik. Kebanyakan teori antrian dan sistem inventori (pergudangan) dimodelkan secara stokastik. Model simulasi stokastik menghasilkan output random, karenanya diuji hanya berupa estimasi (perkiraan) kebenaran karakteristiknya pada model; ini merupakan model utama yang tidak menguntungkan dalam simulasi.
3. Model Simulasi Kontinyu dan Diskrit
Kita mendefinisikan model simulasi diskrit dan kontinyu analog dengan cara kita mendefinisikan sistem diskrit dan kontinyu sebelumnya. Keputusan apakah menggunakan model diskrit atau kontinyu pada sistem-sistem utama tergantung dalam kekhususan yang obyektif. Sebagai contoh, model arus lalu lintas jalan tol menjadi diskrit jika karakteristik dan gerakan mobil secara individu adalah terpenting. Alternatifnya jika mobil dapat diuji secara bersama-sama/berkelompok, arus lalu lintas dapat dijelaskan dengan persamaan yang berbeda dalam model kontinyu.
JENIS SIMULASI
1. Simulasi Kontinyu
Simulasi kontinyu mengenai pemodelan melewati waktu pada sistem oleh perwakilan variabel state berubah secara kontinyu dengan waktu. Secara khusus, model simulasi kontinyu meliputi perbedaan persamaan yang memberikan hubungan pada kecepatan perubahan variabel state dengan waktu. Jika perbedaan persamaan menjadi lebih sederhana, mereka dapat dipicahkan secara analitik untuk memberikan nilai pada variabel state untuk semua nilai waktu sebagai fungsi nilai pada variabel stete di waktu ke-nol. Untuk kebanyakan solusi analitik model kontinyu adalah tidak mungkin, bagaimanapun, dan teknik analisis numerik, misalnya Integrasi Runge-Kutta, adalah digunakan untuk menggabungkan perbedaan persamaan secara numerik, memberikan nilai secara khusus untuk variabel state di waktu ke-nol.
Beberapa produk-produk simulasi seperti SIMULINK dan Dymola, memiliki rancangan yang spesifik untuk membangun model simulasi kontinyu. Sebagai tambahan, paket simulasi event-dioskrit Arena, AweSim dan Extend memiliki kapabilitas pemodelan kontinyu. Ada tiga paket yang memiliki tambahan keuntungan pada simulasi komponen kontinyu dan diskrit dalam satu model.
2. Kombinasi Simulasi Diskrit-Kontinyu
Ketika beberapa sistem tidak mungkin diskrit atau tidak mungkin kontinyu, kebutuhan bisa timbul untuk menyusun sebuah model dengan aspek simulasi diskrit dan kontinyu, menghasilkan sebuah kombinasi simulasi diskrit-kontinyu (Combined discrete-continuous simulation). Pritsker (1995, pp 61-62) menjelaskan tiga tipe mendasar interaksi yang dapat terjadi antara perubahan variabel state secara diskrit dan secara kontinyu:
– Sebuah event diskrit bisa menyebabkan sebuah diskrit berubah dalam nilai variabel state kontinyu.
– Sebuah event diskrit bisa menyebabkan pengaturan hubungan sebuah variabel state kontinyu berubah pada waktu khusus.
– Sebuah variabel state kontinyu mencapai ambang nilai bisa menyebabkan sebuah event diskrit terjadi atau diskedulkan.
Model kombinasi diskrit-kontinyu adapat dibangun dalam Arena [Pegden, Shannon, dan Sadowski (1995)], AweSim [Pritsker dan O’Reilly (1999)], dan Extend [Imagine (1997b)].
3. Simulasi Monte Carlo
Kita mendefinisikan simulasi Monte Carlo menjadi sebuah skema menggunakan bilangan random, yaitu random variate U(0, 1), yang digunakan untuk memecahkan stokastik tertentu atau problem-problem detetrministik dimana perjalanan waktu berperan tidak substantif. Dengan demikian, simulasi Monte Carlo secara umum statik dari pada dinamik. Pembaca akan mencatat bahwa walaupun beberapa penulis mendifiniskan simulasi Monte Carlo menjadi beberapa simulasi terlibat menggunakan bilangan random, kami mendefinisikan lebih terbatas. Nama simulasi atau metode Monte Carlo diawali selama perang dunia ke-2, ketika pendekatan ini telah diaplikasikan untuk masalah yang berhubungan untuk pengembangan bom atom.
Tidak ada komentar:
Posting Komentar